Renal denervation alleviates vascular remodeling in spontaneously hypertensive rats by regulating perivascular adipose tissue

肾失神经支配通过调节血管周围脂肪组织减轻自发性高血压大鼠的血管重塑

阅读:10
作者:Tingting Jiang #, Yongkang Wei #, Rui Xu, Yuanyuan Jin, Tingting Song, Huiying Wang, Wenjia Chen, Hui Tian, Lei Xu, Yong Zhao, Yu Fu

Abstract

Vascular remodeling is the main pathological process that causes the damage of the target organ of hypertension. Perivascular adipose tissue (PVAT) surrounds blood vessels and plays a key role in the pathogenesis of various cardiovascular diseases. This study aimed to investigate the effects of renal denervation (RDN) on hypertensive vascular remodeling and to elucidate the role of PVAT in this process. Male spontaneously hypertensive rat (SHR) and Wistar-Kyoto (WKY) rat were selected. Aortic vascular remodeling was evaluated using hematoxylin and eosin (H&E) staining and Masson's trichrome staining. Morphological changes in the PVAT were observed through H&E and Oil Red O staining. Dihydroethidium was used to measure oxidative stress levels in PVAT, while western blot analysis was used to determine the expression levels of proteins associated with vascular remodeling. The results showed that the aortic medial thickness, media thickness/lumen diameter, collagen volume fraction, and reactive oxygen species (ROS) level in PVAT were significantly higher in the SHR group than in the WKY group. The indexes mentioned above were lower in the SHR-RDN group than in the SHR group. H&E staining revealed that fat droplets in PVAT in the SHR-RDN group became smaller and browning occurred. Moreover, the protein expression of uncoupling protein-1 (UCP-1) and neuregulin 4 (Nrg4) was significantly increased in the SHR-RDN group. In addition, the expression of adiponectin increased and the expression of leptin decreased in the SHR-RDN group compared to the SHR group. In conclusion, RDN can relieve hypertensive vascular remodeling, which may be associated with PVAT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。