Uncovering the brain-wide pattern of synaptic input to vasopressin-expressing neurons in the paraventricular nucleus of the hypothalamus

揭示下丘脑室旁核中表达加压素的神经元的全脑突触输入模式

阅读:4
作者:Jonathan Woodson, Joseph F Bergan

Abstract

Arginine vasopressin (AVP) is a neuropeptide critical for the mammalian stress response and social behavior. AVP produced in the hypothalamus regulates water osmolality and vasoconstriction in the body, and in the brain, it regulates social behavior, aggression, and anxiety. However, the circuit mechanisms that link AVP to social behavior, homeostatic function, and disease are not well understood. This study investigates the circuit configurations of AVP-expressing neurons in the rodent hypothalamus and characterizes synaptic input from the entire brain. We targeted the paraventricular nucleus (PVN) using retrograde viral tracing techniques to identify direct afferent synaptic connections made onto AVP-expressing neurons. AVP neurons in the PVN display region-specific anatomical configurations that reflect their unique contributions to homeostatic function, motor behaviors, feeding, and affiliative behavior. The afferent connections identified were similar in both sexes and subsequent molecular investigation of these inputs shows that those local hypothalamic inputs are overwhelmingly nonpeptidergic cells indicating a potential interneuron nexus between hormone cell activation and broader cortical connection. This proposed work reveals new insights into the organization of social behavior circuits in the brain, and how neuropeptides act centrally to modulate social behaviors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。