Boar Sperm Cryopreservation Improvement Using Semen Extender Modification by Dextran and Pentaisomaltose

使用葡聚糖和五甲基麦芽糖改性精液稀释剂改进猪精子冷冻保存

阅读:5
作者:Ondrej Simonik, Filipa Bubenickova, Lucie Tumova, Michaela Frolikova, Vishma Pratap Sur, Jan Beran, Katerina Havlikova, Lenka Hackerova, Daniela Spevakova, Katerina Komrskova, Pavla Postlerova

Abstract

The long-term storage of boar sperm presents an ongoing challenge, and the modification of the cryoprotective compounds in semen extenders is crucial for improving cryopreservation's success rate. The aim of our study was to reduce the percentage of glycerol in the extender by elimination or substitution with biocompatible, non-toxic polysaccharides. For boar semen extender improvement, we tested a novel modification with the polysaccharides dextran and pentaisomaltose in combination with unique in silico predictive modeling. We targeted the analysis of in vitro qualitative sperm parameters such as motility, viability, mitochondrial activity, acrosome integrity, and DNA integrity. Non-penetrating polysaccharide-based cryoprotective agents interact with sperm surface proteins such as spermadhesins, which are recognized as fertility markers of boar sperm quality. The in silico docking study showed a moderate binding affinity of dextran and pentaisomaltose toward one specific spermadhesin known as AWN, which is located in the sperm plasma membrane. Pentaisomaltose formed a hydrophobic pocket for the AWN protein, and the higher energy of this protein-ligand complex compared with dextran was calculated. In addition, the root mean square deviation (RMSD) analysis for the molecular dynamics (MD) of both polysaccharides and AWN simulation suggests their interaction was highly stable. The in silico results were supported by in vitro experiments. In the experimental groups where glycerol was partially or entirely substituted, the use of pentaisomaltose resulted in improved sperm mitochondrial activity and DNA integrity after thawing when compared with dextran. In this paper, we demonstrate that pentaisomaltose, previously used for cryopreservation in hematopoietic stem cells, represents a promising compound for the elimination or reduction of glycerol in extenders for boar semen cryopreservation. This novel approach, using in silico computer prediction and in vitro testing, represents a promising technique to help identify new cryoprotectants for use in animal breeding or genetic resource programs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。