Cardiac deficiency of P21-activated kinase 1 promotes atrial arrhythmogenesis in mice following adrenergic challenge

心脏缺乏 P21 活化激酶 1 可导致小鼠在接受肾上腺素刺激后发生心房心律失常

阅读:5
作者:Eunjeong Jung, Rebecca Capel, Congshan Jiang, Elisa Venturi, Georgiana Neagu, Sarah Pearcey, Yafei Zhou, Yanmin Zhang, Ming Lei

Abstract

P21-activated kinase 1 (Pak1) signalling plays a vital and overall protective role in the heart. However, the phenotypes of Pak1 deficiency in the cardiac atria have not been well explored. In this study, Pak1 cardiac-conditional knock-out (cKO) mice were studied under baseline and adrenergic challenge conditions. Pak1 cKO mice show atrial arrhythmias including atrial fibrillation (AF) in vivo, detected during anaesthetized electrocardiography without evidence of interstitial fibrosis upon Masson's trichrome staining. Optical mapping of left atrial preparations from Pak1 cKO mice revealed a higher incidence of Ca2+ and action potential alternans under isoprenaline challenge and differences in baseline action potential and calcium transient characteristics. Type-2 ryanodine receptor (RyR2) channels from Pak1 cKO hearts had a higher open probability than those from wild-type. Reverse transcription-quantitative polymerase chain reaction and Western blotting indicated that pCamkIIδ and RyR2 are highly phosphorylated at baseline in the atria of Pak1 cKO mice, while the expression of Slc8a2 and Slc8a3 as a Na+-Ca2+ exchanger, controlling the influx of Ca2+ from outside of the cell and efflux of Na+ from the cytoplasm, are augmented. Chromatin immunoprecipitation study showed that pCreb1 interacts with Slc8a2 and Slc8a3. Our study thus demonstrates that deficiency of Pak1 promotes atrial arrhythmogenesis under adrenergic stress, probably through post-translational and transcriptional modifications of key molecules that are critical to Ca2+ homeostasis. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。