Fast and label-free intraoperative discrimination of malignant pancreatic tissue by attenuated total reflection infrared spectroscopy

利用衰减全反射红外光谱法快速、无标记地在术中鉴别恶性胰腺组织

阅读:4
作者:Rimante Bandzeviciute, Gerald Steiner, Katja Liedel, Jonas Golde, Edmund Koch, Thilo Welsch, Christoph Kahlert, Daniel E Stange, Marius Distler, Jürgen Weitz, Justinas Ceponkus, Valdas Sablinskas, Christian Teske

Aim

We describe the application of fiber-based attenuated total reflection infrared (ATR IR) spectroscopy for label-free discrimination of normal pancreatic, tumorous, and pancreatitis tissue. A pilot study for the intraoperative application was performed. Approach: The method was applied for unprocessed freshly resected tissue samples of 58 patients, and a classification model for differentiating between the distinct tissue classes was established.

Conclusion

Our study shows the possibility of applying fiber-based ATR IR spectroscopy in combination with a supervised classification model for rapid pancreatic tissue identification with a high potential for transfer into intraoperative surgical diagnostics.

Results

The developed three-class classification model for tissue spectra allows for the delineation of tumors from normal and pancreatitis tissues using a probability score for class assignment. Subsequently, the method was translated into intraoperative application. Fiber optic ATR IR spectra were obtained from freshly resected pancreatic tissue directly in the operating room.

Significance

Pancreatic surgery is a highly demanding and routinely applied procedure for the treatment of several pancreatic lesions. The outcome of patients with malignant entities crucially depends on the margin resection status of the tumor. Frozen section analysis for intraoperative evaluation of tissue is still time consuming and laborious. Aim: We describe the application of fiber-based attenuated total reflection infrared (ATR IR) spectroscopy for label-free discrimination of normal pancreatic, tumorous, and pancreatitis tissue. A pilot study for the intraoperative application was performed. Approach: The method was applied for unprocessed freshly resected tissue samples of 58 patients, and a classification model for differentiating between the distinct tissue classes was established. Results: The developed three-class classification model for tissue spectra allows for the delineation of tumors from normal and pancreatitis tissues using a probability score for class assignment. Subsequently, the method was translated into intraoperative application. Fiber optic ATR IR spectra were obtained from freshly resected pancreatic tissue directly in the operating room. Conclusion: Our study shows the possibility of applying fiber-based ATR IR spectroscopy in combination with a supervised classification model for rapid pancreatic tissue identification with a high potential for transfer into intraoperative surgical diagnostics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。