Networking State of Ytterbium Ions Probing the Origin of Luminescence Quenching and Activation in Nanocrystals

镱离子的网络状态探究纳米晶体中发光猝灭和激活的起源

阅读:10
作者:Sheng Mei, Jiajia Zhou, Hong-Tao Sun, Yangjian Cai, Ling-Dong Sun, Dayong Jin, Chun-Hua Yan

Abstract

At the organic-inorganic interface of nanocrystals, electron-phonon coupling plays an important but intricate role in determining the diverse properties of nanomaterials. Here, it is reported that highly doping of Yb3+ ions within the nanocrystal host can form an energy-migration network. The networking state Yb3+ shows both distinct Stark splitting peak ratios and lifetime dynamics, which allows quantitative investigations of quenching and thermal activation of luminescence, as the high-dimensional spectroscopy signatures can be correlated to the attaching and de-attaching status of surface molecules. By in-situ surface characterizations, it is proved that the Yb-O coordination associated with coordinated water molecules has significantly contributed to this reversible effect. Moreover, using this approach, the prime quencher -OH can be switched to -CH in the wet-chemistry annealing process, resulting in the electron-phonon coupling probability change. This study provides the molecular level insights and dynamics of the surface dark layer of luminescent nanocrystals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。