Inhibiting the JNK Signaling Pathway Attenuates Hypersensitivity and Anxiety-Like Behavior in a Rat Model of Non-specific Chronic Low Back Pain

抑制 JNK 信号通路可减轻非特异性慢性腰痛大鼠模型的过敏和焦虑样行为

阅读:8
作者:Yifan Li #, Bingyu Zhang #, Jie Xu, Xiao Jiang, Liang Jing, Yanghua Tian, Kai Wang, Juanjuan Zhang

Abstract

Low back pain (LBP) has become a leading cause of disability worldwide. Astrocyte activation in the spinal cord plays an important role in the maintenance of latent sensitization of dorsal horn neurons in LBP. However, the role of spinal c-Jun N-terminal kinase (JNK) in astrocytes in modulating pain behavior of LBP model rats and its neurobiological mechanism have not been elucidated. Here, we investigate the role of the JNK signaling pathway on hypersensitivity and anxiety-like behavior caused by repetitive nerve growth factor (NGF) injections in male non-specific LBP model rats. LBP was produced by two injections (day 0, day 5) of NGF into multifidus muscle of the low backs of rats. We observed prolonged mechanical and thermal hypersensitivity in the low backs or hindpaws. Persistent anxiety-like behavior was observed, together with astrocyte, p-JNK, and neuronal activation and upregulated expression of monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-X-C motif) ligand 1 (CXCL1) proteins in the spinal L2 segment. Second, the JNK inhibitor SP600125 was intrathecally administrated in rats from day 10 to day 12. It attenuated mechanical and thermal hypersensitivity of the low back or hindpaws and anxiety-like behavior. Meanwhile, SP600125 decreased astrocyte and neuronal activation and the expression of MCP-1 and CXCL1 proteins. These results showed that hypersensitivity and anxiety-like behavior induced by NGF in LBP rats could be attenuated by the JNK inhibitor, together with downregulation of spinal astrocyte activation, neuron activation, and inflammatory cytokines. Our results indicate that intervening with the spinal JNK signaling pathway presents an effective therapeutic approach to alleviating LBP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。