Minoxidil weakens newly synthesized collagen in fibrotic synoviocytes from osteoarthritis patients

米诺地尔削弱骨关节炎患者纤维化滑膜细胞中新合成的胶原蛋白

阅读:9
作者:Stefan Sarkovich #, Peter P Issa #, Andrew Longanecker, Davis Martin, Kaitlyn Redondo, Patrick McTernan, Jennifer Simkin, Luis Marrero

Conclusions

MXD is an attractive candidate for local antifibrotic pharmacotherapy for SFb by compromising the integrity of newly formed fibrous deposits by FSCs during KOA and following arthroplasty. Targeted antifibrotic supplementation could improve physical therapy and arthroscopic lysis strategies aimed at breaking down joint scarring. However, the effect of MXD on other joint-specific TGFβ1-mediated processes or non-fibrotic components requires further investigation.

Methods

Synovium from 10 KOA patients grouped by SFb severity was preserved for picrosirius and LH2b histology or culture. Protein and RNA were purified from fibrotic FSCs after 8 days with or without 0.5 µM MXD and/or 4 ng/mL of TGFβ1. COL1 and Pyd protein concentrations from ELISA and expression of Col1a1, Acta2, and Plod2 genes by qPCR were compared by parametric tests with α = 0.05.

Purpose

Synovial fibrosis (SFb) formation and turnover attributable to knee osteoarthritis (KOA) can impart painful stiffness and persist following arthroplasty. To supplement joint conditioning aimed at maximizing peri-operative function, we evaluated the antifibrotic effect of Minoxidil (MXD) on formation of pyridinoline (Pyd) cross-links catalyzed by Plod2-encoded lysyl hydroxylase (LH)2b that strengthen newly synthesized type-I collagen (COL1) in fibroblastic synovial cells (FSCs) from KOA patients. MXD was predicted to decrease Pyd without significant alterations to Col1a1 transcription by FSCs stimulated with transforming growth factor (TGF)β1.

Results

Histological LH2b expression corresponded to SFb severity. MXD attenuated COL1 output in KOA FSCs but only in the absence of TGFβ1 and consistently decreased Pyd under all conditions with significant downregulation of Plod2 but minimal alterations to Col1a1 and Acta2 transcripts. Conclusions: MXD is an attractive candidate for local antifibrotic pharmacotherapy for SFb by compromising the integrity of newly formed fibrous deposits by FSCs during KOA and following arthroplasty. Targeted antifibrotic supplementation could improve physical therapy and arthroscopic lysis strategies aimed at breaking down joint scarring. However, the effect of MXD on other joint-specific TGFβ1-mediated processes or non-fibrotic components requires further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。