Persistent disruption of lateral junctional complexes and actin cytoskeleton in parotid salivary glands following radiation treatment

放射治疗后腮腺唾液腺横向连接复合体和肌动蛋白细胞骨架持续破坏

阅读:14
作者:Wen Yu Wong, Maricela Pier, Kirsten H Limesand

Abstract

Xerostomia and hyposalivation are debilitating side effects for patients treated with ionizing radiation for head and neck cancer. Despite technological advances, collateral damage to the salivary glands remains a significant problem for patients and severely diminishes their quality of life. During the wound healing process, restoration of junctional contacts is necessary to maintain polarity, structural integrity, and orientation cues for secretion. However, little is known about whether these structural molecules are impacted following radiation damage and more importantly, during tissue restoration. We evaluated changes in adherens junctions and cytoskeletal regulators in an injury model where mice were irradiated with 5 Gy and a restoration model where mice injected postradiation with insulin-like growth factor 1 (IGF1) are capable of restoring salivary function. Using coimmunoprecipitation, there is a decrease in epithelial (E)-cadherin bound to β-catenin following damage that is restored to untreated levels with IGF1. Via its adaptor proteins, β-catenin links the cadherins to the cytoskeleton and part of this regulation is mediated through Rho-associated coiled-coil containing kinase (ROCK) signaling. In our radiation model, filamentous (F)-actin organization is fragmented, and there is an induction of ROCK activity. However, a ROCK inhibitor, Y-27632, prevents E-cadherin/β-catenin dissociation following radiation treatment. These findings illustrate that radiation induces a ROCK-dependent disruption of the cadherin-catenin complex and alters F-actin organization at stages of damage when hyposalivation is observed. Understanding the regulation of these components will be critical in the discovery of therapeutics that have the potential to restore function in polarized epithelium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。