Diversity-Oriented Synthesis Catalyzed by Diethylaminosulfur-Trifluoride-Preparation of New Antitumor Ecdysteroid Derivatives

二乙氨基三氟化硫催化多样性定向合成新型抗肿瘤蜕皮甾体衍生物的制备

阅读:5
作者:Máté Vágvölgyi, Endre Kocsis, Márta Nové, Nikoletta Szemerédi, Gabriella Spengler, Zoltán Kele, Róbert Berkecz, Tamás Gáti, Gábor Tóth, Attila Hunyadi

Abstract

Fluorine represents a privileged building block in pharmaceutical chemistry. Diethylaminosulfur-trifluoride (DAST) is a reagent commonly used for replacement of alcoholic hydroxyl groups with fluorine and is also known to catalyze water elimination and cyclic Beckmann-rearrangement type reactions. In this work we aimed to use DAST for diversity-oriented semisynthetic transformation of natural products bearing multiple hydroxyl groups to prepare new bioactive compounds. Four ecdysteroids, including a new constituent of Cyanotis arachnoidea, were selected as starting materials for DAST-catalyzed transformations. The newly prepared compounds represented combinations of various structural changes DAST was known to catalyze, and a unique cyclopropane ring closure that was found for the first time. Several compounds demonstrated in vitro antitumor properties. A new 17-N-acetylecdysteroid (13) exerted potent antiproliferative activity and no cytotoxicity on drug susceptible and multi-drug resistant mouse T-cell lymphoma cells. Further, compound 13 acted in significant synergism with doxorubicin without detectable direct ABCB1 inhibition. Our results demonstrate that DAST is a versatile tool for diversity-oriented synthesis to expand chemical space towards new bioactive compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。