Significance
We have designed three different types of AIE materials: non-targeting (AIE-Br), mitochondria-targeting (AIE-Mit-TPP), lysosome-targeting (AIE-Lyso). Our results proved that mitochondria-targeting AIE material induced degradation of mutp53 proteins via the proteasome degradation pathway and abrogated mutp53-conferred GOF phenotypes. Furthermore, we performed in vitro studies on the effect of the tested materials in mutp53-expressing cancer cells and demonstrated our findings via in vivo investigations in a mouse subcutaneous p53R175H TOV112D ovarian cancer model. Our results confirmed the link between the proteasome pathway and autophagy and thus proposed a strategy of combining AIE-Mit-TPP with autophagy inhibitors for the targeted treatment of mutp53-associated tumors. Finally, we found that AIE-Mit-TPP could induce degradation of a wide-spectrum mutp53 proteins, which makes mitochondria-targeting AIE materials an effective therapeutic strategy for p53-mutated cancers.
Statement of significance
We have designed three different types of AIE materials: non-targeting (AIE-Br), mitochondria-targeting (AIE-Mit-TPP), lysosome-targeting (AIE-Lyso). Our results proved that mitochondria-targeting AIE material induced degradation of mutp53 proteins via the proteasome degradation pathway and abrogated mutp53-conferred GOF phenotypes. Furthermore, we performed in vitro studies on the effect of the tested materials in mutp53-expressing cancer cells and demonstrated our findings via in vivo investigations in a mouse subcutaneous p53R175H TOV112D ovarian cancer model. Our results confirmed the link between the proteasome pathway and autophagy and thus proposed a strategy of combining AIE-Mit-TPP with autophagy inhibitors for the targeted treatment of mutp53-associated tumors. Finally, we found that AIE-Mit-TPP could induce degradation of a wide-spectrum mutp53 proteins, which makes mitochondria-targeting AIE materials an effective therapeutic strategy for p53-mutated cancers.
