Loss of myocyte enhancer factor 2 expression in osteoclasts leads to opposing skeletal phenotypes

破骨细胞中肌细胞增强因子 2 表达的丧失导致相反的骨骼表型

阅读:4
作者:Nicholas Blixt, Andrew Norton, Anqi Zhang, Conrado Aparicio, Hari Prasad, Rajaram Gopalakrishnan, Eric D Jensen, Kim C Mansky

Abstract

Osteoclasts are multinuclear cells that resorb bone. Osteoclast differentiation is regulated by multiple transcription factors which may be acting in a single or multiple factor complex to regulate gene expression. Myocyte enhancer factor 2 (MEF2) is a family of transcription factors whose role during osteoclast differentiation has not been well characterized. Because MEF2A and MEF2D are the family members most highly expressed during osteoclast differentiation, we created conditional knockout mice models for MEF2A and/or MEF2D. In vitro cultures of A- and D-KO osteoclasts were smaller and less numerous than wild type cultures, while AD-KO osteoclasts were almost completely devoid of TRAP positive mononuclear cells. Female A-KO mice are osteopetrotic while male A- and D-KO mice of either sex had no significant in vivo skeletal phenotype, suggesting a sex-specific regulation of osteoclasts by MEF2A. Lastly, in vivo male AD-KO mice are osteopenic, indicating while MEF2 is required for M-CSF and RANKL-stimulated osteoclastogenesis in vitro, osteoclasts can form in the absence of MEF2 in vivo via a RANKL-alternative pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。