miR-342-5p downstream to Notch enhances arterialization of endothelial cells in response to shear stress by repressing MYC

Notch 下游的 miR-342-5p 通过抑制 MYC 增强内皮细胞在剪切应力作用下的动脉化

阅读:11
作者:Xiaoyan Zhang, Jiaxing Sun, Peiran Zhang, Ting Wen, Ruonan Wang, Liang Liang, Ziyan Yang, Jiayan Li, Jiayulin Zhang, Bo Che, Xingxing Feng, Xiaowei Liu, Hua Han, Xianchun Yan

Abstract

During vascular development, endothelial cells (ECs) undergo arterialization in response to genetic programs and shear stress-triggered mechanotransduction, forming a stable vasculature. Although the Notch receptor is known to sense shear stress and promote EC arterialization, its downstream mechanisms remain unclear. In this study, the Notch downstream miR-342-5p was found to respond to shear stress and promote EC arterialization. Shear stress upregulated miR-342-5p in a Notch-dependent manner in human umbilical vein endothelial cells (HUVECs). miR-342-5p overexpression upregulated the shear stress-associated transcriptomic signature. Moreover, miR-342-5p upregulated arterial markers and promoted EC arterialization in a Matrigel plug assay and retinal angiogenesis model. In contrast, miR-342-5p knockdown downregulated arterial markers, compromised retinal arterialization, and partially abrogated shear stress and Notch activation-induced arterial marker upregulation. Mechanistically, miR-342-5p overexpression suppressed MYC to repress EC proliferation and promote arterialization, achieved by promoting MYC protein degradation by targeting the EYA3. Consistently, EYA3 overexpression rescued miR-342-5p-mediated MYC downregulation and EC arterialization. In vivo, miR-342-5p expression was notably decreased in the ligated artery in a hindlimb ischemia model, and an intramuscular injection of miR-342-5p promoted EC arterialization and improved perfusion. In summary, miR-342-5p, a mechano-miR, mediates the effects of shear stress-activated Notch on EC arterialization and is a potential therapeutic target for ischemic diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。