Human Corneal Epithelial Cells Internalize Aspergillus flavus Spores by Actin-Mediated Endocytosis

人类角膜上皮细胞通过肌动蛋白介导的内吞作用吸收黄曲霉孢子

阅读:6
作者:Divya Arunachalam, Venkatesh Prajna Namperumalsamy, Lalitha Prajna, Dharmalingam Kuppamuthu

Abstract

Human corneal epithelial (HCE) cells play a significant role in the innate immune response by secreting cytokines and antimicrobial peptides when they encounter fungal pathogens. But the detailed mechanism of attachment and engulfment of the fungal conidia by HCE cells is not well understood. Here, we show the phagocytosis of Aspergillus flavus conidia by RCB2280 cells and primary HCE cultures using confocal microscopy and proteomic analysis of conidium-containing phagosomes. Phalloidin staining showed actin polymerization, leading to an actin ring around engulfed conidia. Cytochalasin D inhibited the actin-mediated endocytosis of the conidia. Immunolabeling of the early endosomal markers CD71 and early endosomal antigen (EEA1) and the late endosomal markers lysosome-associated membrane protein 1 (LAMP1), Rab7, and cathepsin G showed that endosomal proteins were recruited to the site of conidia and showed maturation of the conidium-containing phagosomes. Lysotracker red DND 99 labeling showed the acidification of the phagosomes containing conidia. Phagosome-specific proteome analysis confirmed the recruitment of various phagosomal and endosomal proteins to the conidium-containing phagosomes. These results show that the ocular surface epithelium contributes actively to antifungal defense by the phagocytosis of invading fungal conidia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。