Exploring the genomic traits of infant-associated microbiota members from a Zimbabwean cohort

探索津巴布韦人群中婴儿相关微生物群成员的基因组特征

阅读:6
作者:Taona Emmah Mudhluli #, Magdalena Kujawska #, Julia Mueller, Angela Felsl, Bastian-Alexander Truppel, Lindsay J Hall, Inam Chitsike, Exnevia Gomo, Danai Tavonga Zhou

Conclusion

This study identified promising probiotic strains within Zimbabwean isolates, offering the potential for early-life diet and microbial therapies. However, the presence of antibiotic resistance genes in infant-associated microbes raises concerns for infection risk and next-stage probiotic development. Further investigation in larger cohorts, particularly in regions with limited existing data on antibiotic and probiotic use, is crucial to validate these initial insights. Impact statement: This research represents the first investigation of its kind in the Zimbabwean context, focusing on potential probiotic strains within the early-life gut microbiota. By identifying local probiotic strains, this research can contribute to the development of probiotic interventions that are tailored to the Zimbabwean population, which can help address local health challenges and promote better health outcomes for infants. Another essential aspect of the study is the investigation of antimicrobial resistance genes present in Zimbabwean bacterial strains. Antimicrobial resistance is a significant global health concern, and understanding the prevalence and distribution of resistance genes in different regions can help inform public health policies and interventions.

Results

The study observed some location-based clustering within the main five identified taxonomic groups. Furthermore, there were varying and overall species-specific numbers of genes belonging to different GH families encoded within the analysed dataset. Additionally, distinct strain- and species-specific variances were identified in the potential of Bifidobacterium for metabolizing HMOs. Analysis of putative protease activity indicated a consistent presence of gamma-glutamyl hydrolases in Bifidobacterium, while Enterococcus genomes exhibited a high abundance of aspartyl peptidases. Both genera harboured resistance genes against multiple classes of antimicrobial drugs, with Enterococcus genomes containing a higher number of ARGs compared to Bifidobacterium, on average.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。