IGF-1 receptor antagonism inhibits autophagy

IGF-1 受体拮抗剂抑制自噬

阅读:4
作者:Maurizio Renna, Carla F Bento, Angeleen Fleming, Fiona M Menzies, Farah H Siddiqi, Brinda Ravikumar, Claudia Puri, Moises Garcia-Arencibia, Oana Sadiq, Silvia Corrochano, Sarah Carter, Steve D M Brown, Abraham Acevedo-Arozena, David C Rubinsztein

Abstract

Inhibition of the insulin/insulin-like growth factor signalling pathway increases lifespan and protects against neurodegeneration in model organisms, and has been considered as a potential therapeutic target. This pathway is upstream of mTORC1, a negative regulator of autophagy. Thus, we expected autophagy to be activated by insulin-like growth factor-1 (IGF-1) inhibition, which could account for many of its beneficial effects. Paradoxically, we found that IGF-1 inhibition attenuates autophagosome formation. The reduced amount of autophagosomes present in IGF-1R depleted cells can be, at least in part, explained by a reduced formation of autophagosomal precursors at the plasma membrane. In particular, IGF-1R depletion inhibits mTORC2, which, in turn, reduces the activity of protein kinase C (PKCα/β). This perturbs the actin cytoskeleton dynamics and decreases the rate of clathrin-dependent endocytosis, which impacts autophagosome precursor formation. Finally, with important implications for human diseases, we demonstrate that pharmacological inhibition of the IGF-1R signalling cascade reduces autophagy also in zebrafish and mice models. The novel link we describe here has important consequences for the interpretation of genetic experiments in mammalian systems and for evaluating the potential of targeting the IGF-1R receptor or modulating its signalling through the downstream pathway for therapeutic purposes under clinically relevant conditions, such as neurodegenerative diseases, where autophagy stimulation is considered beneficial.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。