Deletion of muscle IGF-I transiently impairs growth and progressively disrupts glucose homeostasis in male mice

肌肉 IGF-I 的缺失会暂时损害雄性小鼠的生长,并逐渐破坏其葡萄糖稳态

阅读:5
作者:Georgios Vassilakos, Hanqin Lei, Yun Yang, Jason Puglise, Michael Matheny, Julia Durzynska, Matan Ozery, Katherine Bennett, Ray Spradlin, Heather Bonanno, Soohyun Park, Rexford S Ahima, Elisabeth R Barton

Abstract

Insulin-like growth factors (IGFs) are essential for local skeletal muscle growth and organismal physiology, but these actions are entwined with glucose homeostasis through convergence with insulin signaling. The objective of this work was to determine whether the effects of IGF-I on growth and metabolism could be separated. We generated muscle-specific IGF-I-deficient (MID) mice that afford inducible deletion of Igf1 at any age. After Igf1 deletion at birth or in young adult mice, evaluations of muscle physiology and glucose homeostasis were performed up to 16 wk of age. MID mice generated at birth had lower muscle and circulating IGF-I, decreased muscle and body mass, and impaired muscle force production. Eight-wk-old male MID had heightened insulin levels with trends of elevated fasting glucose. This phenotype progressed to impaired glucose handling and increased fat deposition without significant muscle mass loss at 16 wk of age. The same phenotype emerged in 16-wk-old MID mice induced at 12 wk of age, compounded with heightened muscle fatigability and exercise intolerance. We assert that muscle IGF-I independently modulates anabolism and metabolism in an age-dependent manner, thus positioning muscle IGF-I maintenance to be critical for both muscle growth and metabolic homeostasis.-Vassilakos, G., Lei, H., Yang, Y., Puglise, J., Matheny, M., Durzynska, J., Ozery, M., Bennett, K., Spradlin, R., Bonanno, H., Park, S., Ahima, R. S., Barton, E. R. Deletion of muscle IGF-I transiently impairs growth and progressively disrupts glucose homeostasis in male mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。