HuR (Human Antigen R) Regulates the Contraction of Vascular Smooth Muscle and Maintains Blood Pressure

HuR(人类抗原R)调节血管平滑肌收缩并维持血压

阅读:9
作者:Shanshan Liu, Xiuxin Jiang, Hanlin Lu, Mengdan Xing, Yanning Qiao, Cheng Zhang, Wencheng Zhang

Approach and results

Vascular HuRSMKO (smooth muscle-specific HuR knockout) mice were generated by crossbreeding HuRflox/flox mice with α-SMA (α-smooth muscle actin)-Cre mice. As compared with CTR (control) mice, HuRSMKO mice showed hypertension and cardiac hypertrophy. HuR levels were decreased in aortas from hypertensive patients and SHRs (spontaneously hypertensive rats), and overexpression of HuR could lower the blood pressure of SHRs. Contractile response to vasoconstrictors was increased in mesenteric artery segments isolated from HuRSMKO mice. The functional abnormalities in HuRSMKO mice were attributed to decreased mRNA and protein levels of RGS (regulator of G-protein signaling) protein(s) RGS2, RGS4, and RGS5, which resulted in increased intracellular calcium increase. Consistently, the degree of intracellular calcium ion increase in HuR-deficient smooth muscle cells was reduced by overexpression of RGS2, RGS4, or RGS5. Finally, administration of RGS2 and RGS5 reversed the elevated blood pressure in HuRSMKO mice. Conclusions: Our findings indicate that HuR regulates vascular smooth muscle contraction and maintains blood pressure by modulating RGS expression.

Conclusions

Our findings indicate that HuR regulates vascular smooth muscle contraction and maintains blood pressure by modulating RGS expression.

Objective

HuR (human antigen R)-an RNA-binding protein-is involved in regulating mRNA stability by binding adenylate-uridylate-rich elements. This study explores the role of HuR in the regulation of smooth muscle contraction and blood pressure. Approach and

Results

Vascular HuRSMKO (smooth muscle-specific HuR knockout) mice were generated by crossbreeding HuRflox/flox mice with α-SMA (α-smooth muscle actin)-Cre mice. As compared with CTR (control) mice, HuRSMKO mice showed hypertension and cardiac hypertrophy. HuR levels were decreased in aortas from hypertensive patients and SHRs (spontaneously hypertensive rats), and overexpression of HuR could lower the blood pressure of SHRs. Contractile response to vasoconstrictors was increased in mesenteric artery segments isolated from HuRSMKO mice. The functional abnormalities in HuRSMKO mice were attributed to decreased mRNA and protein levels of RGS (regulator of G-protein signaling) protein(s) RGS2, RGS4, and RGS5, which resulted in increased intracellular calcium increase. Consistently, the degree of intracellular calcium ion increase in HuR-deficient smooth muscle cells was reduced by overexpression of RGS2, RGS4, or RGS5. Finally, administration of RGS2 and RGS5 reversed the elevated blood pressure in HuRSMKO mice. Conclusions: Our findings indicate that HuR regulates vascular smooth muscle contraction and maintains blood pressure by modulating RGS expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。