KAT6B May Be Applied as a Potential Therapeutic Target for Glioma

KAT6B 或可作为胶质瘤的潜在治疗靶点

阅读:7
作者:Yingzi Liu, Xiaoyang Duan, Chunyan Zhang, Jiangwei Yuan, Junpeng Wen, Cuihong Zheng, Jian Shi, Meng Yuan

Abstract

Glioma is a prevalent malignancy among brain tumors with high modality and low prognosis. Ferroptosis has been identified to play a crucial role in the progression and treatment of cancers. KAT6B, as a histone acetyltransferase, is involved in multiple cancer development. However, the function of KAT6B in glioma is still elusive. Here, we aimed to evaluate the effect of KAT6B on ferroptosis in glioma cells and explored the potential mechanisms. We observed that the expression of KAT6B was enhanced in clinical glioma samples. The viability of glioma cells was repressed by erastin and the overexpression of KAT6B rescued the phenotype in the cells. Meanwhile, the apoptosis of glioma cells was induced by the treatment of erastin, while the overexpression of KAT6B blocked the effect in the cells. The levels of lipid ROS and iron were promoted by the treatment of erastin and the overexpression of KAT6B could reverse the effect in the cells. Mechanically, we identified that the expression of STAT3 was repressed by the KAT6B knockdown in glioma cells. The KAT6B was able to enrich on the promoter of STAT3 in glioma cells. Meanwhile, ChIP assay showed that the knockdown of KAT6B inhibited the enrichment of histone H3 lysine 23 acetylation (H3K23ac) and RNA polymerase II (RNA pol II) on STAT3 promoter in the cells. Depletion of STAT3 reversed KAT6B-regulated viability, apoptosis, and ferroptosis of glioma cells. Thus, we concluded that KAT6B contributes to glioma progression by repressing ferroptosis via epigenetically inducing STAT3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。