Abstract
Endothelial tip cells (ETCs) located at growing blood vessels display high morphological dynamics and associated intracellular Ca2+ activities with different spatiotemporal patterns during migration. Examining the Ca2+ activity and morphological dynamics of ETCs will provide an insight for understanding the mechanism of vascular development in organs, including the brain. Here, we describe a method for simultaneous monitoring and relevant analysis of the Ca2+ activity and morphology of growing brain ETCs in larval zebrafish. For complete details on the use and execution of this protocol, please refer to Liu et al. (2020).
