Protocol for machine-learning-based 3D image analysis of nuclear envelope tubules in cultured cells

基于机器学习的培养细胞核膜小管三维图像分析协议

阅读:5
作者:Anisha Hundal, Defne Urman, Mia Stanic, Razqallah Hakem, Karim Mekhail

Abstract

The nuclear envelope can form complex structures in physiological and pathological contexts. Current approaches to quantify nuclear envelope structures can be time-consuming or inaccurate. Here, we present a protocol to measure nuclear envelope tubules induced by DNA double-strand breaks using a mid-throughput approach. We describe steps for the induction of these nuclear envelope structures and 3D image analysis using machine-learning-based image segmentation. This protocol can be applied to analyze various nuclear envelope structures in contexts beyond DNA repair. For complete details on the use and execution of this protocol, please refer to Shokrollahi et al.1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。