Physiological Tolerance to ssDNA Enables Strand Uncoupling during DNA Replication

对 ssDNA 的生理耐受性使得 DNA 复制过程中链解偶联成为可能

阅读:6
作者:Amaia Ercilla, Jan Benada, Sampath Amitash, Gijs Zonderland, Giorgio Baldi, Kumar Somyajit, Fena Ochs, Vincenzo Costanzo, Jiri Lukas, Luis Toledo

Abstract

It has been long assumed that normally leading strand synthesis must proceed coordinated with the lagging strand to prevent strand uncoupling and the pathological accumulation of single-stranded DNA (ssDNA) in the cell, a dogma recently challenged by in vitro studies in prokaryotes. Here, we report that human DNA polymerases can function independently at each strand in vivo and that the resulting strand uncoupling is supported physiologically by a cellular tolerance to ssDNA. Active forks rapidly accumulate ssDNA at the lagging strand when POLA1 is inhibited without triggering a stress response, despite ssDNA formation being considered a hallmark of replication stress. Acute POLA1 inhibition causes a lethal RPA exhaustion, but cells can duplicate their DNA with limited POLA1 activity and exacerbated strand uncoupling as long as RPA molecules suffice to protect the elevated ssDNA. Although robust, this uncoupled mode of DNA replication is also an in-built weakness that can be targeted for cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。