Opposite Control of Excitatory and Inhibitory Synapse Formation by Slitrk2 and Slitrk5 on Dopamine Neurons Modulates Hyperactivity Behavior

Slitrk2 和 Slitrk5 对多巴胺神经元上兴奋性和抑制性突触形成的反向控制调节了多动行为

阅读:4
作者:Charleen Salesse, Julien Charest, Hélène Doucet-Beaupré, Anne-Marie Castonguay, Simon Labrecque, Paul De Koninck, Martin Lévesque

Abstract

The neurodevelopmental origin of hyperactivity disorder has been suggested to involve the dopaminergic system, but the underlying mechanisms are still unknown. Here, transcription factors Lmx1a and Lmx1b are shown to be essential for midbrain dopaminergic (mDA) neuron excitatory synaptic inputs and dendritic development. Strikingly, conditional knockout (cKO) of Lmx1a/b in postmitotic mDA neurons results in marked hyperactivity. In seeking Lmx1a/b target genes, we identify positively regulated Slitrk2 and negatively regulated Slitrk5. These two synaptic adhesion proteins promote excitatory and inhibitory synapses on mDA neurons, respectively. Knocking down Slitrk2 reproduces some of the Lmx1a/b cKO cellular and behavioral phenotypes, whereas Slitrk5 knockdown has opposite effects. The hyperactivity caused by this imbalance in excitatory/inhibitory synaptic inputs on dopamine neurons is reproduced by chronically inhibiting the ventral tegmental area during development using pharmacogenetics. Our study shows that alterations in developing dopaminergic circuits strongly impact locomotor activity, shedding light on mechanisms causing hyperactivity behaviors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。