Micafungin protects mouse heart against doxorubicin-induced oxidative injury via suppressing MALT1-dependent k48-linked ubiquitination of Nrf2

米卡芬净通过抑制 MALT1 依赖的 k48 连接的 Nrf2 泛素化保护小鼠心脏免受阿霉素诱导的氧化损伤

阅读:8
作者:Li-Qun Lu, Ming-Rui Li, Lin-Lu Huang, Yan-Xi Che, Ya-Nan Qi, Xiu-Ju Luo, Jun Peng

Abstract

Oxidative stress contributes greatly to doxorubicin (DOX)-induced cardiotoxicity. Down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) is a key factor in DOX-induced myocardial oxidative injury. Recently, we found that mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1)-dependent k48-linked ubiquitination was responsible for down-regulation of myocardial Nrf2 in DOX-treated mice. Micafungin, an antifungal drug, was identified as a potential MALT1 inhibitor. This study aims to explore whether micafungin can reduce DOX-induced myocardial oxidative injury and if its anti-oxidative effect involves a suppression of MALT1-dependent k48-linked ubiquitination of Nrf2. To establish the cardiotoxicity models in vivo and in vitro, mice were treated with a single dose of DOX (15 mg/kg, i.p.) and cardiomyocytes were incubated with DOX (1 μM) for 24 h, respectively. Using mouse model of DOX-induced cardiotoxicity, micafungin (10 or 20 mg/kg) was shown to improve cardiac function, concomitant with suppression of oxidative stress, mitochondrial dysfunction, and cell death in a dose-dependent manner. Similar protective roles of micafungin (1 or 5 μM) were observed in DOX-treated cardiomyocytes. Mechanistically, micafungin weakened the interaction between MALT1 and Nrf2, decreased the k48-linked ubiquitination of Nrf2 while elevated the protein levels of Nrf2 in both DOX-treated mice and cardiomyocytes. Furthermore, MALT1 overexpression counteracted the cardioprotective effects of micafungin. In conclusion, micafungin reduces DOX-induced myocardial oxidative injury via suppression of MALT1, which decreases the k48-linked ubiquitination of Nrf2 and elevates Nrf2 protein levels. Thus, micafungin may be repurposed for treating DOX-induced cardiotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。