Background
Angiogenesis is tightly linked to inflammation and cancer. Regulation of angiogenesis is mediated primarily through activation of receptor tyrosine kinases, thus kinase inhibitors represent a new paradigm in anti-cancer therapy. However, these inhibitors have broad effects on inflammatory processes and multiple cell types. Sunitinib is a multitarget receptor tyrosine kinase inhibitor, which has shown promise for the treatment of glioblastoma, a highly vascularized tumor. However, there is little information as to the direct effects of sunitinib on brain-derived neurons. The
Conclusions
Sunitinib increases neuronal survival and this neurotrophic effect is mediated by NF-κB. Also, the inflammatory proteins COX2 and NOS2 are upregulated by sunitinib in an NF-κB-dependent manner. These data are in agreement with a growing literature suggesting beneficial effects for inflammatory mediators such as NF-κB, COX2 and NOS2 in neurons. Further work is needed to fully explore the effects of sunitinib in the brain and its possible use as a treatment for glioblastoma. Finally, sunitinib may be useful for the treatment of a range of central nervous system diseases where neuronal injury is prominent.
Methods
Primary cortical neurons were exposed to various doses of sunitinib. The drug-treated cultures were assessed for survival by MTT assay and cell death by lactate dehydrogenase release. The ability of sunitinib to affect NF-κB, COX2 and NOS2 expression was determined by western blot. The NF-κB inhibitors dicoumarol, SN50 and BAY11-7085 were employed to assess the role of NF-κB in sunitinib-mediated effects on neuronal survival as well as COX2 and NOS2 expression.
Results
Treatment of neuronal cultures with sunitinib caused a dose-dependent increase in cell survival and decrease in neuronal cell death. Exposure of neurons to sunitinib also induced an increase in the expression of NF-κB, COX2 and NOS2. Inhibiting NF-κB blunted the increase in cell survival and decrease in cell death evoked by sunitinib. Treatment of cell cultures with both sunitinib and NF-κB inhibitors mitigated the increase in COX2 and NOS2 caused by sunitinib. Conclusions: Sunitinib increases neuronal survival and this neurotrophic effect is mediated by NF-κB. Also, the inflammatory proteins COX2 and NOS2 are upregulated by sunitinib in an NF-κB-dependent manner. These data are in agreement with a growing literature suggesting beneficial effects for inflammatory mediators such as NF-κB, COX2 and NOS2 in neurons. Further work is needed to fully explore the effects of sunitinib in the brain and its possible use as a treatment for glioblastoma. Finally, sunitinib may be useful for the treatment of a range of central nervous system diseases where neuronal injury is prominent.
