Exosomal AFAP1-AS1 Promotes the Growth, Metastasis, and Glycolysis of Pituitary Adenoma by Inhibiting HuR Degradation

外泌体 AFAP1-AS1 通过抑制 HuR 降解促进垂体腺瘤的生长、转移和糖酵解

阅读:5
作者:Hengxin Tang, Delong Zhu, Wenxiang Li, Guozhi Zhang, Heng Zhang, Qiujiao Peng

Abstract

Exosomal long noncoding RNAs (lncRNAs), which are highly expressed in tumor-derived exosomes, regulate various cellular behaviors such as cell proliferation, metastasis, and glycolysis by facilitating intercellular communication. Here, we explored the role and regulatory mechanism of tumor-derived exosomal lncRNAs in pituitary adenomas (PA). We isolated exosomes from PA cells, and performed in vitro and in vivo assays to examine their effect on the proliferation, metastasis, and glycolysis of PA cells. In addition, we conducted RNA pull-down, RNA immunoprecipitation, co-immunoprecipitation, and ubiquitination assays to investigate the downstream mechanism of exosomal AFAP1-AS1. Exosomes from PA cells augmented the proliferation, mobility, and glycolysis of PA cells. Moreover, AFAP1-AS1 was significantly enriched in these exosomes and stimulated the growth, migration, invasion, and glycolysis of PA cells in vitro, as well as tumor metastasis in vivo. It also enhanced the binding affinity between Hu antigen R (HuR) and SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1), resulting in HuR ubiquitination and degradation accompanied by enhanced expression of hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2). Moreover, HuR overexpression alleviated the exosomal AFAP1-AS1-mediated promotion of growth, metastasis, and glycolysis effects. These findings indicate that tumor-derived exosomal AFAP1-AS1 modulated SMURF1-mediated HuR ubiquitination and degradation to upregulate HK2 and PKM2 expression, thereby enhancing PA cell growth, metastasis, and glucose metabolism. This suggests targeting exosomal AFAP1-AS1 may be a potential strategy for the treatment of PA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。