Transient Morphological Alterations in the Hippocampus After Pentylenetetrazole-Induced Seizures in Rats

戊四唑诱发大鼠癫痫后海马的短暂形态学改变

阅读:5
作者:Dmitry S Vasilev, Natalia L Tumanova, Kira Kh Kim, Valeria V Lavrentyeva, Nera Y Lukomskaya, Igor A Zhuravin, Lev G Magazanik, Aleksey V Zaitsev

Abstract

The relationships between seizures, neuronal death, and epilepsy remain one of the most disputed questions in translational neuroscience. Although it is broadly accepted that prolonged and repeated seizures cause neuronal death and epileptogenesis, whether brief seizures can produce a mild but similar effect is controversial. In the present work, using a rat pentylenetetrazole (PTZ) model of seizures, we evaluated how a single episode of clonic-tonic seizures affected the viability of neurons in the hippocampus, the area of the brain most vulnerable to seizures, and morphological changes in the hippocampus up to 1 week after PTZ treatment (recovery period). The main findings of the study were: (1) PTZ-induced seizures caused the transient appearance of massively shrunken, hyperbasophilic, and hyperelectrondense (dark) cells but did not lead to detectable neuronal cell loss. These dark neurons were alive, suggesting that they could cope with seizure-related dysfunction. (2) Neuronal and biochemical alterations following seizures were observed for at least 1 week. The temporal dynamics of the appearance and disappearance of dark neurons differed in different zones of the hippocampus. (3) The numbers of cells with structural and functional abnormalities in the hippocampus after PTZ-induced seizures decreased in the following order: CA1 > CA3b,c > hilus > dentate gyrus. Neurons in the CA3a subarea were most resistant to PTZ-induced seizures. These results suggest that even a single seizure episode is a potent stressor of hippocampal neurons and that it can trigger complex neuroplastic changes in the hippocampus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。