Cannabidiol protects against high glucose-induced oxidative stress and cytotoxicity in cardiac voltage-gated sodium channels

大麻二酚可防止心脏电压门控钠通道中高糖诱导的氧化应激和细胞毒性

阅读:6
作者:Mohamed A Fouda, Mohammad-Reza Ghovanloo, Peter C Ruben

Background and purpose

Cardiovascular complications are the major cause of mortality in diabetic patients. However, the molecular mechanisms underlying diabetes-associated arrhythmias are unclear. We hypothesized that high glucose could adversely affect Nav 1.5, the major cardiac sodium channel isoform of the heart, at least partially via oxidative stress. We further hypothesized that cannabidiol (CBD), one of the main constituents of Cannabis sativa, through its effects on Nav 1.5, could protect against high glucose-elicited oxidative stress and cytotoxicity. Experimental approach: To test these ideas, we used CHO cells transiently co-transfected with cDNA encoding human Nav 1.5 α-subunit under control and high glucose conditions (50 or 100 mM for 24 hr). Several experimental and computational techniques were used, including voltage clamp of heterologous expression systems, cell viability assays, fluorescence assays and action potential modelling. Key

Purpose

Cardiovascular complications are the major cause of mortality in diabetic patients. However, the molecular mechanisms underlying diabetes-associated arrhythmias are unclear. We hypothesized that high glucose could adversely affect Nav 1.5, the major cardiac sodium channel isoform of the heart, at least partially via oxidative stress. We further hypothesized that cannabidiol (CBD), one of the main constituents of Cannabis sativa, through its effects on Nav 1.5, could protect against high glucose-elicited oxidative stress and cytotoxicity. Experimental approach: To test these ideas, we used CHO cells transiently co-transfected with cDNA encoding human Nav 1.5 α-subunit under control and high glucose conditions (50 or 100 mM for 24 hr). Several experimental and computational techniques were used, including voltage clamp of heterologous expression systems, cell viability assays, fluorescence assays and action potential modelling. Key

Results

High glucose evoked cell death associated with elevation in reactive oxygen species (ROS) right shifted the voltage dependence of conductance and steady-state fast inactivation, and increased persistent current leading to computational prolongation of action potential (hyperexcitability) which could result in long QT3 arrhythmia. CBD mitigated all the deleterious effects provoked by high glucose. Perfusion with lidocaine (a well-known sodium channel inhibitor with antioxidant effects) or co-incubation of Tempol (a well-known antioxidant) elicited protection, comparable to CBD, against the deleterious effects of high glucose.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。