Longitudinal Analysis of Retinal Ganglion Cell Damage at Individual Axon Bundle Level in Mice Using Visible-Light Optical Coherence Tomography Fibergraphy

使用可见光光学相干断层扫描纤维成像对小鼠单个轴突束水平的视网膜神经节细胞损伤进行纵向分析

阅读:5
作者:Marta Grannonico, David A Miller, Jingyi Gao, Kara M McHaney, Mingna Liu, Michael A Krause, Peter A Netland, Hao F Zhang, Xiaorong Liu

Conclusions

This study is the first to track and quantify individual RGC axon bundles in vivo after ONC injury. Translational relevance: Recognizing RGC loss at its earliest stage is crucial for disease diagnosis and treatment. However, current clinical methods to detect the functional and structural changes in the inner retina are not sensitive enough to directly assess RGC health. In this study, we developed vis-OCTF-based parameters to track RGC damage, making possible to establishing a quantifiable biomarker for glaucoma.

Methods

After acute optic nerve crush injury (ONC) in mice, we analyzed four parameters: lateral bundle width, axial bundle height, cross-sectional area, and the shape of individual bundles. We next correlated the morphological changes in RGC axon bundles with RGC soma loss.

Purpose

We developed a new analytic tool based on visible-light optical coherence tomography fibergraphy (vis-OCTF) to longitudinally track individual axon bundle transformation as a new in vivo biomarker for retinal ganglion cell (RGC) damage.

Results

We showed that axon bundles became wider and taller at three days post ONC (pONC), which correlated with about 15% RGC soma loss. At six days pONC, axon bundles showed a significant reduction in lateral width and cross-sectional area, followed by a reduction in bundle height at nine days pONC. Bundle shrinking at nine days pONC correlated with about 68% RGC soma loss. Both experimental and simulated results suggested that the cross-sectional area of individual RGC axon bundles is more sensitive than bundle width and height to indicate RGC soma loss. Conclusions: This study is the first to track and quantify individual RGC axon bundles in vivo after ONC injury. Translational relevance: Recognizing RGC loss at its earliest stage is crucial for disease diagnosis and treatment. However, current clinical methods to detect the functional and structural changes in the inner retina are not sensitive enough to directly assess RGC health. In this study, we developed vis-OCTF-based parameters to track RGC damage, making possible to establishing a quantifiable biomarker for glaucoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。