An Improved ATP FRET Sensor For Yeast Shows Heterogeneity During Nutrient Transitions

改进的酵母 ATP FRET 传感器在营养转换过程中表现出异质性

阅读:10
作者:Dennis Botman, Johan H van Heerden, Bas Teusink

Abstract

Adenosine 5-triphosphate (ATP) is the main free energy carrier in metabolism. In budding yeast, shifts to glucose-rich conditions cause dynamic changes in ATP levels, but it is unclear how heterogeneous these dynamics are at a single-cell level. Furthermore, pH also changes and affects readout of fluorescence-based biosensors for single-cell measurements. To measure ATP changes reliably in single yeast cells, we developed yAT1.03, an adapted version of the AT1.03 ATP biosensor, that is pH-insensitive. We show that pregrowth conditions largely affect ATP dynamics during transitions. Moreover, single-cell analyses showed a large variety in ATP responses, which implies large differences of glycolytic startup between individual cells. We found three clusters of dynamic responses, and we show that a small subpopulation of wild-type cells reached an imbalanced state during glycolytic startup, characterized by low ATP levels. These results confirm the need for new tools to study dynamic responses of individual cells in dynamic environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。