Trimetazidine Affects Mitochondrial Calcium Uniporter Expression to Restore Ischemic Heart Function via Reactive Oxygen Species/NFκB Pathway Inhibition

曲美他嗪通过抑制活性氧/NFκB 通路影响线粒体钙单向转运蛋白表达从而恢复缺血性心脏功能

阅读:10
作者:Zilong Xiao, Lichun Guan, Hui Shi, Yong Yu, Ziqing Yu, Shengmei Qin, Yangang Su, Ruizhen Chen, Minghui Li, Junbo Ge

Abstract

Studies have demonstrated the roles of trimetazidine beyond being an antianginal agent in ischemic heart disease (IHD) treatment associated with mechanisms of calcium regulation. Our recent studies revealed that mitochondrial calcium uniporter (MCU, the pore-forming unit responsible for mitochondrial calcium entrance) inhibition provided cardioprotective effects for failing hearts. Because trimetazidine and MCU are associated with calcium homeostasis, we hypothesized that trimetazidine may affect MCU to restore the failing heart function. In the present study, we tested this hypothesis in the context of cardiac ischemia in vivo and in vitro. The IHD model was established in male C57BL/6 mice followed by trimetazidine administration intraperitoneally at 20 mg/kg q.o.d for 8 weeks. In vitro studies were performed in a hypoxia model using primary rat neonate cardiomyocytes. The mice survival outcomes and heart function, pathohistologic, and biological changes were analyzed. The results demonstrated that trimetazidine treatment resulted in longer life spans and heart function improvement accompanied by restoration of mitochondrial calcium levels and increase in ATP production via MCU down-regulation. Studies in vitro further showed that trimetazidine treatment and MCU inhibition decreased reactive oxygen species (ROS) production, inhibited the NFκB pathway, and protected the cardiomyocytes from hypoxic injury, and vice versa. Thus, the present study unveils a unique mechanism in which trimetazidine is involved in ameliorating the ischemic failing heart via MCU down-regulation and the following mitochondrial calcium homeostasis restoration, ROS reduction, and cardiomyocyte protection through NFκB pathway inhibition. This mechanism provides a novel explanation for the treatment effects of trimetazidine on IHD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。