Effect of rapamycin on lysosomal accumulation in a CRISPR/Cas9-based cellular model of VPS13A deficiency

雷帕霉素对基于 CRISPR/Cas9 的 VPS13A 缺陷细胞模型中溶酶体积累的影响

阅读:10
作者:A R Tornero-Écija, M A Navas, S Muñoz-Braceras, O Vincent, R Escalante

Abstract

VPS13A is a lipid transfer protein localized at different membrane contact sites between organelles, and mutations in the corresponding gene produce a rare neurodegenerative disease called chorea-acanthocytosis (ChAc). Previous studies showed that VPS13A depletion in HeLa cells results in an accumulation of endosomal and lysosomal markers, suggesting a defect in lysosomal degradation capacity leading to partial autophagic dysfunction. Our goal was to determine whether compounds that modulate the endo-lysosomal pathway could be beneficial in the treatment of ChAc. To test this hypothesis, we first generated a KO model using CRISPR/Cas9 to study the consequences of the absence of VPS13A in HeLa cells. We found that inactivation of VPS13A impairs cell growth, which precludes the use of isolated clones due to the undesirable selection of edited clones with residual protein expression. Therefore, we optimized the use of pool cells obtained shortly after transfection with CRISPR/Cas9 components. These cells are a mixture of wild-type and edited cells that allow a comparative analysis of phenotypes and avoids the selection of clones with residual level of VPS13A expression after long-term growth. Consistent with previous observations by siRNA inactivation, VPS13A inactivation by CRISPR/Cas9 resulted in accumulation of the endo-lysosomal markers RAB7A and LAMP1. Notably, we observed that rapamycin partially suppressed the difference in lysosome accumulation between VPS13A KO and WT cells, suggesting that modulation of the autophagic and lysosomal pathway could be a therapeutic target in the treatment of ChAc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。