Dynamic S-acylation of the ER-resident protein stromal interaction molecule 1 (STIM1) is required for store-operated Ca2+ entry

内质网驻留蛋白基质相互作用分子 1 (STIM1) 的动态 S-酰化是池操纵 Ca2+ 进入的必要条件

阅读:5
作者:Goutham Kodakandla, Savannah J West, Qiaochu Wang, Ritika Tewari, Michael X Zhu, Askar M Akimzhanov, Darren Boehning

Abstract

Many cell surface stimuli cause calcium release from endoplasmic reticulum (ER) stores to regulate cellular physiology. Upon ER calcium store depletion, the ER-resident protein stromal interaction molecule 1 (STIM1) physically interacts with plasma membrane protein Orai1 to induce calcium release-activated calcium (CRAC) currents that conduct calcium influx from the extracellular milieu. Although the physiological relevance of this process is well established, the mechanism supporting the assembly of these proteins is incompletely understood. Earlier we demonstrated a previously unknown post-translational modification of Orai1 with long-chain fatty acids, known as S-acylation. We found that S-acylation of Orai1 is dynamically regulated in a stimulus-dependent manner and essential for its function as a calcium channel. Here using the acyl resin-assisted capture assay, we show that STIM1 is also rapidly S-acylated at cysteine 437 upon ER calcium store depletion. Using a combination of live cell imaging and electrophysiology approaches with a mutant STIM1 protein, which could not be S-acylated, we determined that the S-acylation of STIM1 is required for the assembly of STIM1 into puncta with Orai1 and full CRAC channel function. Together with the S-acylation of Orai1, our data suggest that stimulus-dependent S-acylation of CRAC channel components Orai1 and STIM1 is a critical mechanism facilitating the CRAC channel assembly and function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。