Cannabinoid Receptor 2 Modulates Susceptibility to Experimental Cerebral Malaria through a CCL17-dependent Mechanism

大麻素受体 2 通过 CCL17 依赖机制调节对实验性脑疟疾的易感性

阅读:8
作者:Judith Alferink, Sabine Specht, Hannah Arends, Beatrix Schumak, Kim Schmidt, Christina Ruland, Ramona Lundt, Andrea Kemter, Andrea Dlugos, Janina M Kuepper, Karola Poppensieker, Matthias Findeiss, Önder Albayram, David-M Otte, Janine Marazzi, Jürg Gertsch, Irmgard Förster, Wolfgang Maier, Stefanie S

Abstract

Cerebral malaria is a severe and often fatal complication of Plasmodium falciparum infection. It is characterized by parasite sequestration, a breakdown of the blood-brain barrier, and a strong inflammation in the brain. We investigated the role of the cannabinoid receptor 2 (CB2), an important modulator of neuroinflammatory responses, in experimental cerebral malaria (ECM). Strikingly, mice with a deletion of the CB2-encoding gene (Cnr2(-/-)) inoculated with Plasmodium berghei ANKA erythrocytes exhibited enhanced survival and a diminished blood-brain barrier disruption. Therapeutic application of a specific CB2 antagonist also conferred increased ECM resistance in wild type mice. Hematopoietic derived immune cells were responsible for the enhanced protection in bone marrow (BM) chimeric Cnr2(-/-) mice. Mixed BM chimeras further revealed that CB2-expressing cells contributed to ECM development. A heterogeneous CD11b(+) cell population, containing macrophages and neutrophils, expanded in the Cnr2(-/-) spleen after infection and expressed macrophage mannose receptors, arginase-1 activity, and IL-10. Also in the Cnr2(-/-) brain, CD11b(+) cells that expressed selected anti-inflammatory markers accumulated, and expression of inflammatory mediators IFN-γ and TNF-α was reduced. Finally, the M2 macrophage chemokine CCL17 was identified as an essential factor for enhanced survival in the absence of CB2, because CCL17 × Cnr2 double-deficient mice were fully susceptible to ECM. Thus, targeting CB2 may be promising for the development of alternative treatment regimes of ECM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。