Immunostimulatory activity of the aqueous extract from the leaves of Sambucus racemosa subsp. pendula through TLR4‑dependent JNK activation in RAW264.7 cells

接骨木叶水提取物通过 TLR4 依赖性 JNK 激活 RAW264.7 细胞发挥免疫刺激活性

阅读:6
作者:Hyeok Jin Choi, Gwang Hun Park, Jeong Won Choi, So Jung Park, Jin Hyuk Hwang, Sang Hun Lee, Hae-Yun Kwon, Min Yeong Choi, Jin Boo Jeong

Abstract

Sambucus racemosa subsp. pendula (SRP) is an endemic plant of Korea, exclusively found on Ulleungdo Island. SRP is widely used as both a traditional medicine and food source. However, there is a lack of research on the pharmacological activities of SRP. Therefore, the present study aimed to explore the potential use of SRP leaves (SRPL) as a natural immunostimulant by analyzing its macrophage activation properties and the underlying mechanisms of action. Among the various extraction conditions, SRPL (AE20-SRPL) extracted with 100% distilled water at 20˚C induced the highest nitric oxide (NO) production in RAW264.7 cells. Thus, the further studies were performed using AE20-SRPL. AE20-SRPL increased the production of immunostimulatory factors such as NO, prostaglandin E2, inducible nitric oxide synthase, cyclooxygenase-2, IL-1β and TNF-α and phagocytosis in a dose-dependent manner in RAW264.7 cells without exhibiting cytotoxicity. Among Toll-like receptor (TLR)2 and TLR4, inhibition of TLR4 significantly reduced AE20-SRPL-mediated increases in the production of immunostimulatory factors and phagocytosis in RAW264.7 cells. Furthermore, in RAW264.7 cells, inhibition of JNK, one of the components of MAPK signaling along with ERK1/2 and p38, attenuated the AE20-SRPL-mediated increases in the production of immunostimulatory factors and phagocytosis. Additionally, AE20-SRPL induced the phosphorylation of JNK and inhibition of TLR4 reduced AE20-SRPL-mediated JNK phosphorylation. These results suggested that AE20-SRPL may enhance the production of immunostimulatory factors and phagocytosis through TLR4-dependent activation of JNK in macrophages. Although the present study is limited to in vitro research using a cell model, AE20-SRPL demonstrated potential as a natural material capable of inducing macrophage activation for immune enhancement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。