Notch signaling in osteocytes differentially regulates cancellous and cortical bone remodeling

骨细胞中的 Notch 信号差异调节松质骨和皮质骨的重塑

阅读:7
作者:Ernesto Canalis, Douglas J Adams, Adele Boskey, Kristen Parker, Lauren Kranz, Stefano Zanotti

Abstract

Notch receptors play a role in skeletal development and homeostasis, and Notch activation in undifferentiated and mature osteoblasts causes osteopenia. In contrast, Notch activation in osteocytes increases bone mass, but the mechanisms involved and exact functions of Notch are not known. In this study, Notch1 and -2 were inactivated preferentially in osteocytes by mating Notch1/2 conditional mice, where Notch alleles are flanked by loxP sequences, with transgenics expressing Cre directed by the Dmp1 (dentin matrix protein 1) promoter. Notch1/2 conditional null male and female mice exhibited an increase in trabecular bone volume due to an increase in osteoblasts and decrease in osteoclasts. In male null mice, this was followed by an increase in osteoclast number and normalization of bone volume. To activate Notch preferentially in osteocytes, Dmp1-Cre transgenics were crossed with Rosa(Notch) mice, where a loxP-flanked STOP cassette is placed between the Rosa26 promoter and Notch1 intracellular domain sequences. Dmp1-Cre(+/-);Rosa(Notch) mice exhibited an increase in trabecular bone volume due to decreased bone resorption and an increase in cortical bone due to increased bone formation. Biomechanical and chemical properties were not affected. Osteoprotegerin mRNA was increased, sclerostin and dickkopf1 mRNA were decreased, and Wnt signaling was enhanced in Dmp1-Cre(+/-);Rosa(Notch) femurs. Botulinum toxin A-induced muscle paralysis caused pronounced osteopenia in control mice, but bone mass was preserved in mice harboring the Notch activation in osteocytes. In conclusion, Notch plays a unique role in osteocytes, up-regulates osteoprotegerin and Wnt signaling, and differentially regulates trabecular and cortical bone homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。