Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

使用组织特异性定量相互作用蛋白质组学对全基因组关联研究中的基因位点进行注释

阅读:4
作者:Alicia Lundby, Elizabeth J Rossin, Annette B Steffensen, Moshe Rav Acha, Christopher Newton-Cheh, Arne Pfeufer, Stacey N Lynch; QT Interval International GWAS Consortium (QT-IGC); Søren-Peter Olesen, Søren Brunak, Patrick T Ellinor, J Wouter Jukema, Stella Trompet, Ian Ford, Peter W Macfarlane, Bouw

Abstract

Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes involved in the Mendelian disorder long QT syndrome (LQTS). We integrated the LQTS network with GWAS loci from the corresponding common complex trait, QT-interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LQTS protein network to filter weak GWAS signals by identifying single-nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。