A light-gated cation channel with high reactivity to weak light

对弱光具有高反应性的光门控阳离子通道

阅读:5
作者:Shoko Hososhima, Shinji Ueno, Satoshi Okado, Ken-Ichi Inoue, Masae Konno, Yumeka Yamauchi, Keiichi Inoue, Hiroko Terasaki, Hideki Kandori, Satoshi P Tsunoda

Abstract

The cryptophyte algae, Guillardia theta, possesses 46 genes that are homologous to microbial rhodopsins. Five of them are functionally light-gated cation channelrhodopsins (GtCCR1-5) that are phylogenetically distinct from chlorophyte channelrhodopsins (ChRs) such as ChR2 from Chlamydomonas reinhardtii. In this study, we report the ion channel properties of these five CCRs and compared them with ChR2 and other ChRs widely used in optogenetics. We revealed that light sensitivity varied among GtCCR1-5, in which GtCCR1-3 exhibited an apparent EC50 of 0.21-1.16 mW/mm2, similar to that of ChR2, whereas GtCCR4 and GtCCR5 possess two EC50s, one of which is significantly small (0.025 and 0.032 mW/mm2). GtCCR4 is able to trigger action potentials in high temporal resolution, similar to ChR2, but requires lower light power, when expressed in cortical neurons. Moreover, a high light-sensitive response was observed when GtCCR4 was introduced into blind retina ganglion cells of rd1, a mouse model of retinitis pigmentosa. Thus, GtCCR4 provides optogenetic neuronal activation with high light sensitivity and temporal precision.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。