Single cell functional analysis of multiple myeloma cell populations correlates with diffusion profiles in static microfluidic coculture systems

多发性骨髓瘤细胞群的单细胞功能分析与静态微流体共培养系统中的扩散曲线相关

阅读:5
作者:Thomas A Moore, Edmond W K Young

Abstract

Microfluidic cell culture systems are becoming increasingly useful for studying biology questions, particularly those involving small cell populations that are cultured within microscale geometries mimicking the complex cellular microenvironment. Depending on the geometry and spatial organization of these cell populations, however, paracrine signaling between cell types can depend critically on spatial concentration profiles of soluble factors generated by diffusive transport. In scenarios where single cell data are acquired to study cell population heterogeneities in functional response, uncertainty associated with concentration profiles can lead to interpretation bias. To address this issue and provide important evidence on how diffusion develops within typical microfluidic cell culture systems, a combination of experimental and computational approaches were applied to measure and predict concentration patterns within microfluidic geometries, and characterize the functional response of culture cells based on single-cell resolution transcription factor activation. Using a model coculture system consisting of multiple myeloma cells (MMCs) and neighboring bone marrow stromal cells (BMSCs), we measured concentrations of three cytokines (IL-6, VEGF, and TNF-α) in conditioned media collected from separate culture compartments using a multiplex ELISA system. A 3D numerical model was developed to predict biomolecular diffusion and resulting concentration profiles within the tested microsystems and compared with experimental diffusion of 20 kDa FITC-Dextran. Finally, diffusion was further characterized by controlling exogenous IL-6 diffusion and the coculture spatial configuration of BMSCs to stimulate STAT3 nuclear translocation in MMCs. Results showed agreement between numerical and experimental results, provided evidence of a shallow concentration gradient across the center well of the microsystem that did not lead to a bias in results, and demonstrated that microfluidic systems can be tailored with specific geometries to avoid spatial bias when desired.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。