Aromatherapy: Activating olfactory calcium-sensing receptors impairs renal hemodynamics via sympathetic nerve-mediated vasoconstriction

芳香疗法:激活嗅觉钙敏感受体会通过交感神经介导的血管收缩损害肾脏血流动力学

阅读:7
作者:Shih-Pin Lee, Wei-Yi Wu, Jong-Kai Hsiao, Jia-Hao Zhou, Hao-Hsiang Chang, Chiang-Ting Chien

Aim

This study determines whether the activation of olfactory calcium-sensing receptor initiates a sympathetic activation-dependent neurovascular reflex subsequently contributing to renal hemodynamic depression.

Conclusion

Calcium-sensing receptor acts as a functional chemosensory receptor on olfactory sensory neuron, and its activation causes the global sympathetic enhancement contributing to systematic vasoconstriction and subsequently depresses renal blood flow and glomerular filtration rate. These data implicate a possibly clinical aspect that several environmental stimuli may activate olfactory calcium-sensing receptors to evoke a sympathetic nervous system-mediated neurovascular reflex to depress renal hemodynamics.

Methods

Immunohistochemistry and nose-loading calcium-sensitive dye were used to explore the location and function of calcium-sensing receptor on the olfactory sensory neuron. The renal sympathetic nervous activity, renal hemodynamics and the microcirculation of kidney, liver and intestine were evaluated after liquid-phase intranasal administrations of saline, lidocaine, calcium-sensing receptor agonists and antagonist in sham and bilateral renal denervated rats. Real-time renal glomerular filtration rate was measured by a magnetic resonance renography.

Results

Calcium-sensing receptors were expressed on the cilia the olfactory sensory neuron and their activation depolarized olfactory sensory neuron and induced the calcium influx in the terminal side on olfactory glomeruli. Activating olfactory calcium-sensing receptors significantly increased arterial blood pressure and renal sympathetic nervous activities and subsequently decreased renal blood flow, renal, hepatic and enteral microcirculation. Cotreatments with calcium-sensing receptor antagonist or lidocaine inhibited these physiological alterations. The renal hemodynamic depressions by olfactory calcium-sensing receptor activation were significantly blocked by bilateral renal denervation. The intranasal manganese administration decreased the glomerular filtration rate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。