Integrin β3 enhances glycolysis and increases lactate production in endometriosis

整合素 β3 增强子宫内膜异位症中的糖酵解并增加乳酸的产生

阅读:8
作者:Xiaoxiao Gao, Wei Shao, Jiaqi Wang, Han Gao, Xiaolu Zhang, Chen Xia, Mingqing Li, Songping Liu

Background

Endometriosis (EMs) is a chronic disease characterized by endometrial-like tissue present outside of the uterus. Macrophages have been confirmed to participate in the development of EMs. Integrin β3 (ITGB3), a β-subunit of the integrin family, is crucial in tumor progression. In this study, we investigated the pivotal role of ITGB3 in endometrial stromal cells (ESCs) and its influence on the development of EMs, particularly focusing on the regulatory impact of macrophages.

Conclusions

Our findings indicate that ITGB3 up-regulated by macrophages are able to regulate the glycolysis to promote the development of EMs and lactate enhances the ability of proliferation, migration, invasion and adhesion of EMs iv vivo and in vitro.

Methods

In this study, we used western blot, Real-time qPCR, Immunohistochemistry to detected the high expression of ITGB3 in ESCs. ITGB3-overexpression ESCs (ITGB3-OE) was constructed and detected by RNA-seq with normal ESCs. ATP and lactate expression assay, transwell migration assay, wound healing, cell adhesion assay and other molecular biology techniques were used to explore the potential mechanisms. In vivo, we constructed the EMs mouse model and injected with cilengitite to inhibit ITGB3.

Results

Here, we found ITGB3 highly expressed in ectopic lesions in EMs. The increasing ITGB3 resulted in activating the glycolysis, which produced more ATP and lactate in ITGB3-OE. After culturing with lactate, the migration, proliferation and invasion ability of ESCs were enhanced, while the result in 2-DG was reversed. In vivo, the results showed that after antagonizing ITGB3, the number of ectopic lesions was decrease. Conclusions: Our findings indicate that ITGB3 up-regulated by macrophages are able to regulate the glycolysis to promote the development of EMs and lactate enhances the ability of proliferation, migration, invasion and adhesion of EMs iv vivo and in vitro.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。