Three-dimensional visualization of electroacupuncture-induced activation of brown adipose tissue via sympathetic innervation in PCOS rats

电针通过交感神经支配激活 PCOS 大鼠棕色脂肪组织的三维可视化

阅读:16
作者:Hongru Gao #, Xiaoyu Tong #, Wei Hu #, Yicong Wang, Kuinyu Lee, Xiaoqing Xu, Jiemei Shi, Zhenle Pei, Wenhan Lu, Yuning Chen, Ruonan Zhang, Zheyi Wang, Ziyu Wang, Chengzhi Han, Yu Wang, Yi Feng

Background

Low-frequency electroacupuncture (EA) has been shown to ameliorate obesity and reproductive dysfunctions in patients with polycystic ovary syndrome (PCOS), and further explorations in PCOS-like rats showed that EA could affect white adipose tissue. However, the function and neuromodulation of brown adipose tissue (BAT) in PCOS and after EA treatment have remained unknown. The present study focused on the role of BAT in PCOS-like rats and its relationship with EA and characterized the three-dimensional (3D) innervation of BAT associated with activation molecules.

Conclusion

Our study highlights the significant role of BAT and its sympathetic innervations in PCOS and in EA therapy.

Methods

Female rats (21 days old) were implanted with dihydrotestosterone or fed with a high fat diet to establish PCOS-like and obesity models, respectively, and then EA treatment at "Guilai" (ST 29) and "Sanyinjiao" (SP 6) was carried out for 4 weeks. In the present study, morphological analysis, 3D imaging, molecular biology, and other experimental techniques were used to study the sympathetic nerves and activity of BAT.

Results

PCOS-like rats showed both obvious weight gain and reproductive dysfunction, similar to what was seen in obese rats except for the absence of reproductive dysfunction. The body weight gain was mainly caused by an increase in white adipose tissue, and there was an abnormal decrease in BAT. Because both the lipid metabolism and reproductive disorders could be improved with bilateral EA at "Guilai" (ST 29) and "Sanyinjiao" (SP 6), especially the restoration of BAT, we further investigated the neuromodulation and inflammation in BAT and identified the sympathetic marker tyrosine hydroxylase as one of the key factors of sympathetic nerves. Modified adipo-clearing technology and 3D high-resolution imaging showed that crooked or dispersed sympathetic nerves, but not the twisted vasculature, were reconstructed and associated with the activation of BAT and are likely to be the functional target for EA treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。