Mitochondrial Glycerol-3-Phosphate Dehydrogenase Restricts HBV Replication via the TRIM28-Mediated Degradation of HBx

线粒体甘油-3-磷酸脱氢酶通过TRIM28介导的HBx降解来限制HBV复制

阅读:5
作者:Canyu Liu, Kaitao Zhao, Yingshan Chen, Yongxuan Yao, Jielin Tang, Jingjing Wang, Chonghui Xu, Qi Yang, Yi Zheng, Yifei Yuan, Hao Sun, Yongli Zhang, Yuan Zhou, Jizheng Chen, Yun Wang, Chunchen Wu, Rongjuan Pei, Xinwen Chen

Abstract

Hepatitis B virus (HBV) infection affects hepatic metabolism. Serum metabolomics studies have suggested that HBV possibly hijacks the glycerol-3-phosphate (G3P) shuttle. In this study, the two glycerol-3-phosphate dehydrogenases (GPD1 and GPD2) in the G3P shuttle were analyzed for determining their role in HBV replication and the findings revealed that GPD2 and not GPD1 inhibited HBV replication. The knockdown of GPD2 expression upregulated HBV replication, while GPD2 overexpression reduced HBV replication. Moreover, the overexpression of GPD2 significantly reduced HBV replication in hydrodynamic injection-based mouse models. Mechanistically, this inhibitory effect is related to the GPD2-mediated degradation of HBx protein by recruiting the E3 ubiquitin ligase TRIM28 and not to the alterations in G3P metabolism. In conclusion, this study revealed GPD2, a key enzyme in the G3P shuttle, as a host restriction factor in HBV replication. IMPORTANCE The glycerol-3-phosphate (G3P) shuttle is important for the delivery of cytosolic reducing equivalents into mitochondria for oxidative phosphorylation. The study analyzed two key components of the G3P shuttle and identified GPD2 as a restriction factor in HBV replication. The findings revealed a novel mechanism of GPD2-mediated inhibition of HBV replication via the recruitment of TRIM28 for degrading HBx, and the HBx-GPD2 interaction could be another potential therapeutic target for anti-HBV drug development.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。