Transformer-based AI technology improves early ovarian cancer diagnosis using cfDNA methylation markers

基于 Transformer 的 AI 技术利用 cfDNA 甲基化标记改善早期卵巢癌诊断

阅读:6
作者:Gen Li, Yongqiang Zhang, Kun Li, Xiaohong Liu, Yaping Lu, Zhenlin Zhang, Zhihai Liu, Yong Wu, Fei Liu, Hong Huang, Meixing Yu, Zhao Yang, Xiaoxue Zheng, Chengbin Guo, Yuanxu Gao, Taorui Wang, Manson Fok, Johnson Yiu-Nam Lau, Kun Shi, Xiaoqiong Gu, Lingchuan Guo, Huiyan Luo, Fanxin Zeng, Kang Zhang

Abstract

Epithelial ovarian cancer (EOC) is the deadliest women's cancer and has a poor prognosis. Early detection is the key for improving survival (a 5-year survival rate in stage I/II is over 70% compared to that of 25% in stage III/IV) and can be achieved through methylation markers from circulating cell-free DNA (cfDNA) using a liquid biopsy. In this study, we first identify top 500 EOC markers differentiating EOC from healthy female controls from 3.3 million methylome-wide CpG sites and validated them in 1,800 independent cfDNA samples. We then utilize a pretrained AI transformer system called MethylBERT to develop an EOC diagnostic model which achieves 80% sensitivity and 95% specificity in early-stage EOC diagnosis. We next develop a simple digital droplet PCR (ddPCR) assay which archives good performance, facilitating early EOC detection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。