Efficacy of β-Lactam-plus-Macrolide Combination Therapy in a Mouse Model of Lethal Pneumococcal Pneumonia

β-内酰胺加大环内酯类联合治疗对致死性肺炎球菌肺炎小鼠模型的疗效

阅读:7
作者:Daisuke Yoshioka, Chiaki Kajiwara, Yoshikazu Ishii, Kenji Umeki, Kazufumi Hiramatsu, Jun-Ichi Kadota, Kazuhiro Tateda

Abstract

Community-acquired pneumonia is a common disease with considerable morbidity and mortality, for which Streptococcus pneumoniae is accepted as a leading cause. Although β-lactam-plus-macrolide combination therapy for this disease is recommended in several guidelines, the clinical efficacy of this strategy against pneumococcal pneumonia remains controversial. In this study, we examined the effects of β-lactam-plus-macrolide combination therapy on lethal mouse pneumococcal pneumonia and explored the mechanisms of action in vitro and in vivo We investigated survival, lung bacterial burden, and cellular host responses in bronchoalveolar lavage fluids obtained from mice infected with pneumonia and treated with ceftriaxone, azithromycin, or both in combination. Although in vitro synergy was not observed, significant survival benefits were demonstrated with combination treatment. Lung neutrophil influx was significantly lower in the ceftriaxone-plus-azithromycin-treated group than in the ceftriaxone-treated group, whereas no differences in the lung bacterial burden were observed on day 3 between the ceftriaxone-plus-azithromycin-treated group and the ceftriaxone-treated group. Notably, the analysis of cell surface markers in the ceftriaxone-plus-azithromycin combination group exhibited upregulation of presumed immune checkpoint ligand CD86 and major histocompatibility complex class II in neutrophils and CD11b-positive CD11c-positive (CD11b(+) CD11c(+)) macrophages and dendritic cells, as well as downregulation of immune checkpoint receptors cytotoxic-T lymphocyte-associated antigen 4 and programmed death 1 in T helper and T regulatory cells. Our data demonstrate that the survival benefits of ceftriaxone-plus-azithromycin therapy occur through modulation of immune checkpoints in mouse pneumococcal pneumonia. In addition, immune checkpoint molecules may be a novel target class for future macrolide research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。