Conclusions
In summary, our research identified the STAT1/DLEU2/miR-23b-3p/NOTCH2/Notch axis in GC development, indicating that DLEU2 might function as a novel biomarker in GC.
Methods
Quantitative real-time PCR (RT-qPCR) and western blot analysis were conducted to evaluate the expression levels and protein levels of related genes in GC cells. Functional assays were implemented to explore the effect of deleted in lymphocytic leukemia 2 (DLEU2). The upstream and downstream mechanisms of DLEU2 were verified by mechanism investigations.
Results
The expression of long non-coding RNA (lncRNA) DLEU2 was observably high in GC cells and tissues. DLEU2 silence depressed the capacities of proliferation, migration and invasion but promoted apoptosis in GC cells. Moreover, DLEU2 was activated by signal transducer and activator of transcription 1 (STAT1) and sequestered microRNA-23b-3p (miR-23b-3p) to modulate the expression of notch receptor 2 (NOTCH2), thereby stimulating Notch signaling pathway. More importantly, DLEU2 contributed to GC progression via targeting miR-23b-3p/NOTCH2 axis. Conclusions: In summary, our research identified the STAT1/DLEU2/miR-23b-3p/NOTCH2/Notch axis in GC development, indicating that DLEU2 might function as a novel biomarker in GC.
