Maternal Inflammation Exaggerates Offspring Susceptibility to Cerebral Ischemia-Reperfusion Injury via the COX-2/PGD2/DP2 Pathway Activation

母体炎症通过激活 COX-2/PGD2/DP2 通路增加后代对脑缺血再灌注损伤的敏感性

阅读:10
作者:Yuke Li #, Wen Luo #, Jiahua Zhang, Ying Luo, Wenli Han, Hong Wang, Hui Xia, Zhihao Chen, Yang Yang, Qi Chen, Huan Li, Lu Yang, Congli Hu, Haifeng Huang, Zhe Peng, Xiaodan Tan, Miaomiao Li, Junqing Yang

Abstract

The pathogenesis of cerebral ischemia-reperfusion (I/R) injury is complex and does not exhibit an effective strategy. Maternal inflammation represents one of the most important factors involved in the etiology of brain injury in newborns. We aimed to investigate the effect of maternal inflammation on offspring susceptibility to cerebral I/R injury and the mechanisms by which it exerts its effects. Pregnant SD rats were intraperitoneally injected with LPS (300 μg/kg/day) at gestational days 11, 14, and 18. Pups were subjected to MCAO/R on postnatal day 60. Primary neurons were obtained from postnatal day 0 SD rats and subjected to OGD/R. Neurological deficits, brain injury, neuronal viability, neuronal damage, and neuronal apoptosis were assessed. Oxidative stress and inflammation were evaluated, and the expression levels of COX-2/PGD2/DP pathway-related proteins and apoptotic proteins were detected. Maternal LPS exposure significantly increased the levels of oxidative stress and inflammation, significantly activated the COX-2/PGD2/DP2 pathway, and increased proapoptotic protein expression. However, maternal LPS exposure significantly decreased the antiapoptotic protein expression, which subsequently increased neurological deficits and cerebral I/R injury in offspring rats. The corresponding results were observed in primary neurons. Moreover, these effects of maternal LPS exposure were reversed by a COX-2 inhibitor and DP1 agonist but exacerbated by a DP2 agonist. In conclusion, maternal inflammatory exposure may increase offspring susceptibility to cerebral I/R injury. Moreover, the underlying mechanism might be related to the activation of the COX-2/PGD2/DP2 pathway. These findings provide a theoretical foundation for the development of therapeutic drugs for cerebral I/R injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。