ADAM10-Mediated Ectodomain Shedding Is an Essential Driver of Podocyte Damage

ADAM10 介导的细胞外结构域脱落是足细胞损伤的重要驱动因素

阅读:4
作者:Marlies Sachs, Sebastian Wetzel, Julia Reichelt, Wiebke Sachs, Lisa Schebsdat, Stephanie Zielinski, Lisa Seipold, Lukas Heintz, Stephan A Müller, Oliver Kretz, Maja Lindenmeyer, Thorsten Wiech, Tobias B Huber, Renate Lüllmann-Rauch, Stefan F Lichtenthaler, Paul Saftig, Catherine Meyer-Schwesinger

Background

Podocytes embrace the glomerular capillaries with foot processes, which are interconnected by a specialized adherens junction to ultimately form the filtration barrier. Altered adhesion and loss are common features of podocyte injury, which could be mediated by shedding of cell-adhesion molecules through the regulated activity of cell surface-expressed proteases. A Disintegrin and Metalloproteinase 10 (ADAM10) is such a protease known to mediate ectodomain shedding of adhesion molecules, among others. Here we evaluate the involvement of ADAM10 in the process of antibody-induced podocyte injury.

Conclusions

ADAM10-mediated ectodomain shedding of injury-related cadherins drives podocyte injury.

Methods

Membrane proteomics, immunoblotting, high-resolution microscopy, and immunogold electron microscopy were used to analyze human and murine podocyte ADAM10 expression in health and kidney injury. The functionality of ADAM10 ectodomain shedding for podocyte development and injury was analyzed, in vitro and in vivo, in the anti-podocyte nephritis (APN) model in podocyte-specific, ADAM10-deficient mice.

Results

ADAM10 is selectively localized at foot processes of murine podocytes and its expression is dispensable for podocyte development. Podocyte ADAM10 expression is induced in the setting of antibody-mediated injury in humans and mice. Podocyte ADAM10 deficiency attenuates the clinical course of APN and preserves the morphologic integrity of podocytes, despite subepithelial immune-deposit formation. Functionally, ADAM10-related ectodomain shedding results in cleavage of the cell-adhesion proteins N- and P-cadherin, thus decreasing their injury-related surface levels. This favors podocyte loss and the activation of downstream signaling events through the Wnt signaling pathway in an ADAM10-dependent manner. Conclusions: ADAM10-mediated ectodomain shedding of injury-related cadherins drives podocyte injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。