Spatially Resolving Size Effects on Diffusivity in Nanoporous Extracellular Matrix-like Materials with Fluorescence Correlation Spectroscopy Super-Resolution Optical Fluctuation Imaging

利用荧光相关光谱超分辨率光学波动成像分析纳米多孔细胞外基质类材料中扩散率的空间分辨尺寸效应

阅读:6
作者:Surajit Chatterjee, Stephanie N Kramer, Benjamin Wellnitz, Albert Kim, Lydia Kisley

Abstract

It is well documented that the nanoscale structures within porous microenvironments greatly impact the diffusion dynamics of molecules. However, how the interaction between the environment and molecules influences the diffusion dynamics has not been thoroughly explored. Here, we show that fluorescence correlation spectroscopy super-resolution optical fluctuation imaging (fcsSOFI) can be used to accurately measure the diffusion dynamics of molecules within varying matrices such as nanopatterned surfaces and porous agarose hydrogels. Our data demonstrate the robustness of fcsSOFI, where it is possible not only to quantify the diffusion speeds of molecules in heterogeneous media but also to recover the matrix structure with resolution on the order of 100 nm. Using dextran molecules of varying sizes, we show that the diffusion coefficient is sensitive to the change in the molecular hydrodynamic radius. fcsSOFI images further reveal that smaller dextran molecules can freely move through the small pores of the hydrogel and report the detailed porous structure and local diffusion heterogeneities not captured by the average diffusion coefficient. Conversely, bigger dextran molecules are confined and unable to freely move through the hydrogel, highlighting only the larger pore structures. These findings establish fcsSOFI as a powerful tool to characterize spatial and diffusion information of diverse macromolecules within biorelevant matrices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。