METTL3 regulates alternative splicing of cell cycle-related genes via crosstalk between mRNA m6A modifications and splicing factors

METTL3 通过 mRNA m6A 修饰和剪接因子之间的串扰来调节细胞周期相关基因的可变剪接

阅读:6
作者:Yeongjoo Kim, Seungjae Shin, Sunyoung Kwon, Kisung Moon, Su-Vin Baek, Ahyoung Jo, Hyung-Sik Kim, Gue-Ho Hwang, Sangsu Bae, Yun Hak Kim, Sung-Yup Cho, Jung-Min Oh

Abstract

N6-methyladenosine (m6A) modification in RNA affects various aspects of RNA metabolism and regulates gene expression. This modification is modulated by many regulatory proteins, such as m6A methyltransferases (writers), m6A demethylases (erasers), and m6A-binding proteins (readers). Previous studies have suggested that alterations in m6A regulatory proteins induce genome-wide alternative splicing in many cancer cells. However, the functional effects and molecular mechanisms of m6A-mediated alternative splicing have not been fully elucidated. To understand the consequences of this modification on RNA splicing in cancer cells, we performed RNA sequencing and analyzed alternative splicing patterns in METTL3-knockdown osteosarcoma U2OS cells. We detected 1,803 alternatively spliced genes in METTL3-knockdown cells compared to the controls and found that cell cycle-related genes were enriched in differentially spliced genes. A comparison of the published MeRIP-seq data for METTL14 with our RNA sequencing data revealed that 70-87% of alternatively spliced genes had an m6A peak near 1 kb of alternative splicing sites. Among the 19 RNA-binding proteins enriched in alternative splicing sites, as revealed by motif analysis, expression of SFPQ highly correlated with METTL3 expression in 12,839 TCGA pan-cancer patients. We also found that cell cycle-related genes were enriched in alternatively spliced genes of other cell lines with METTL3 knockdown. Taken together, we suggest that METTL3 regulates m6A-dependent alternative splicing, especially in cell cycle-related genes, by regulating the functions of splicing factors such as SFPQ.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。